A-LEVEL Mathematics

MPC4 Pure Core 4

Mark scheme

[^0]Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Sorft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q2	Solution	Mark	Total	Comment
(a)	$\begin{gathered} R=\sqrt{58} \\ \sqrt{58} \cos \alpha=7 \text { or } \sqrt{58} \sin \alpha=3 \text { or } \tan \alpha=\frac{3}{7} \\ \alpha=23.2^{0} \end{gathered}$	B1 M1 A1	3	Must see $R=\sqrt{58}, R= \pm \sqrt{58}$ is B0 ft on their value of R. Must see $\alpha=23.2^{0}$ Allow AWRT 22.9^{0} to 23.3^{0}.
	Accept any decimal equivalent to $\sqrt{58}$ to at least 3 SF provided it is rounded correctly - e.g. 7.62, 7.616 etc. e.g. using $R=7.61$ to get $\alpha=23.1^{0}$ would score $\mathbf{B 0} \mathbf{M 1} \mathbf{A 1}$. Explicit use of $\cos \alpha=7$ and $\sin \alpha=3$ to get to $\tan \alpha=\frac{3}{7}$ is $\mathbf{M 0} \mathbf{A 0}$ but marks in (b) are available. Candidates who write $R \cos \alpha=7$ and $R \sin \alpha=3$ without finding R but reach a correct value for α score M1 A1. An expression of the form $R \cos (x-\alpha)$ can score the $\mathbf{B 1}$ and/or $\mathbf{A 1}$ if R and/or α are correct.			
(b)	$\begin{array}{r} \cos ^{-1}\left(\frac{5}{\sqrt{58}}\right) \text { or } 48.964 \ldots \\ \text { and } 311.0359 \ldots \\ 36.1^{0} \text { and } 167.1^{0} \end{array}$	M1 dM1 A1		Finding an angle from $\cos ^{-1}\left(\frac{5}{\mathrm{R}}\right)$. For $360-\cos ^{-1}\left(\frac{5}{\mathrm{R}}\right)$ only between 0^{0} and 360^{0} CAO. These two values only.
	Question says 'Use your answer to part (a)' so using a different method or NMS is $0 / 3$. For M1 and dM1 marks accept 2 SF or better. dM1 is for correct ft fourth quadrant solution (360° - first solution) and $\mathbf{N O}$ others between 0° and 360°. The dM1 mark could be PI if candidate goes straight to the two correct answers from the M1 mark. Ignore any solutions outside the interval $0^{\circ} \leq \theta \leq 180^{\circ}$ for final A1. Condone omission of degree symbol or other letter in place of θ.			
	Total		6	

Q3	Solution	Mark	Total	Comment
(a)(i)	$\mathrm{f}\left(-\frac{2}{3}\right)=6\left(-\frac{2}{3}\right)^{3}-11\left(-\frac{2}{3}\right)^{2}+2\left(-\frac{2}{3}\right)+8$	M1		Attempt at $\mathrm{f}\left(-\frac{2}{3}\right)$
$=0$	(hence) factor	A1	$\mathbf{2}$	Correct arithmetic seen and conclusion.

Question says 'Use the factor theorem' so long division scores $\mathbf{0} / \mathbf{2}$.
Candidate could imply conclusion at beginning, e.g. $3 x+2$ is a factor if $\mathrm{f}\left(-\frac{2}{3}\right)=0$ etc.
Just $\mathrm{f}\left(-\frac{2}{3}\right)=6\left(-\frac{2}{3}\right)^{3}-11\left(-\frac{2}{3}\right)^{2}+2\left(-\frac{2}{3}\right)+8=-8+8=0$ and conclusion is M1 A0 as no 'arithmetic' but seeing such as $\mathrm{f}\left(-\frac{2}{3}\right)=-\frac{48}{27}-\frac{44}{9}-\frac{4}{3}+8 \quad \mathrm{OE}=0$ and conclusion would score M1 A1.

(a)(ii)	Attempt at quadratic factor	M1		
$2 x^{2}-5 x+4$	A1			
$b^{2}-4 a c=25-32$ or -7	dM1			
	<0 OE so no (more) factors / roots / solutions	A1	$\mathbf{4}$	
e.g. long division or factorising				
lorrect quadratic				
Correct $b^{2}-4 a c$ for their quadratic				
Valid reason and conclusion needed.				

To earn the M1 for any approach we must see either $\left(2 x^{2}-5 x+c\right)$ or $\left(2 x^{2}+b x+4\right)$ PI.
If $\left(x+\frac{2}{3}\right)$ is used instead of $(3 x+2)$ we need $\left(6 x^{2}-15 x+c\right)$ or $\left(6 x^{2}+b x+12\right)$ for M1
The dM1 is for a correct $b^{2}-4 a c$ for their quadratic (can be unsimplified) - e.g. $5^{2}-4(2)(4)$.
If using completing the square we need to see the form $p(x-q)^{2}=r$ correct for their quadratic
For final A1, candidates must have a correct quadratic, correct discriminant and correct conclusion.
(b) $\quad \mathrm{g}(x)=(3 x+2)\left(2 x^{2}-5 x+4\right)$

$$
\begin{aligned}
& \quad-(3 x+2)(2 x-2) \\
& =(3 x+2)\left(2 x^{2}-7 x+6\right) \\
& =(3 x+2)(x-2)(2 x-3)
\end{aligned}
$$

M1

A1
or $\mathrm{g}(x)=6 x^{3}-17 x^{2}+4 x+12$
Attempt at quadratic factor
2
Correct three linear factors

If using known factor M1 could be earned for $(3 x+2)\left(2 x^{2}-7 x+c\right)$ or $(3 x+2)\left(2 x^{2}+b x+6\right)$
If using another factor M1 could be earned for $(x-2)\left(6 x^{2}-5 x+c\right)$ or $(x-2)\left(6 x^{2}+b x-6\right)$

$$
\text { or }(2 x-3)\left(3 x^{2}-4 x+c\right) \text { or }(2 x-3)\left(3 x^{2}+b x-4\right)
$$

If a calculator is used to solve the cubic in order to factorise, it scores $\mathbf{0} / \mathbf{2}$ or $\mathbf{2 / 2}$
e.g. $\left(x+\frac{2}{3}\right)(x-2)\left(x-\frac{3}{2}\right)$ would score $\mathbf{0} / \mathbf{2}$ but $6\left(x+\frac{2}{3}\right)(x-2)\left(x-\frac{3}{2}\right)$ would score $\mathbf{2} / \mathbf{2}$.

(c)	$\mathrm{h}(x)=$ $\frac{\mathrm{g}(x)}{6 x^{3}-5 x^{2}-6 x}$ $=\frac{(3 x+2)(x-2)(2 x-3)}{x(3 x+2)(2 x-3)}$ $\left(=\frac{x-2}{x}\right)$ $=1-2 x^{-1}$	$\mathbf{M 1}$	$\mathbf{A 1}$
	$\mathbf{2}$	Attempt at full linear factors and cancelling at least one common factor. PI by correct answer in any form. Final answer must be seen in this form.	

Q5	Solution	Mark	Total	Comment
(a)	$\begin{aligned} \sin 3 \theta= & \sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\ = & 2 \sin \theta \cos \theta \cos \theta \\ & \quad+\left(1-2 \sin ^{2} \theta\right) \sin \theta \\ = & 3 \sin \theta-4 \sin ^{3} \theta \end{aligned}$	B1 B1 B1 B1	4	Use of the correct $\sin (A+B)$ identity. PI by next two B marks Use of the correct $\sin 2 A$ identity Use of a correct $\cos 2 A$ identity in ACF AG - be convinced
	For third B1 they could use $\cos ^{2} \theta-\sin ^{2} \theta$ or $2 \cos ^{2} \theta-1$ rather than $1-2 \sin ^{2} \theta$ for $\cos 2 \theta$. Condone missing brackets only if recovered. For fourth $\mathbf{B 1}$ we must see $\cos ^{2} \theta=1-\sin ^{2} \theta$ used to obtain the printed answer and no errors. Condone use of any other letter in place of θ for first 3 marks but withhold the final $\mathbf{B 1}$.			
(b)	$\begin{gathered} \text { From (a) } \begin{array}{c} 2 \sin ^{3} \theta=\frac{1}{2}(3 \sin \theta-\sin 3 \theta) \\ \begin{array}{c} 2 \sin ^{3} \theta \mathrm{~d} \theta=p \cos \theta+q \cos 3 \theta \\ =-\frac{3}{2} \cos \theta+\frac{1}{6} \cos 3 \theta \end{array} \\ \int 3 \mathrm{~d} \theta=3 \theta \\ \int=\left[-\frac{3}{2} \cos \frac{\pi}{6}+\frac{1}{6} \cos \frac{3 \pi}{6}+3 \frac{\pi}{6}\right] \\ -\left[-\frac{3}{2} \cos 0+\frac{1}{6} \cos 0+(0)\right] \\ =\left[-\frac{3 \sqrt{3}}{4}+(0)+\frac{\pi}{2}\right]-\left[-\frac{3}{2}+\frac{1}{6}+(0)\right] \\ =\left[\frac{3 \sqrt{3}}{3}+\frac{\pi}{2}\right. \end{array} \end{gathered}$	B1 M1 A1 B1 dM1 A1	6	OE: ACF to enable them to replace $2 \sin ^{3} \theta$. p and q are any constants Both integrated correctly Must be 3θ $F\left(\frac{\pi}{6}\right)-F(0)$ correct for their integrated function - no MC allowed here. ACF but must be exact. Apply ISW (if necessary) after correct answer seen.
The dM1 and A1 marks can be earned if candidate's 3θ term is 3 x say. The dM1 mark can be PI by correct final answer. With a common denominator, answer is $\frac{1}{12}(16+6 \pi-9 \sqrt{3})$. If hybrid use of x and θ in trig. Functions - contact your Team Leader. NMS is $0 / 6$	The $\mathbf{d M 1}$ and $\mathbf{A 1}$ marks can be earned if candidate's 3θ term is 3 x say. The dM1 mark can be PI by correct final answer. With a common denominator, answer is $\frac{1}{12}(16+6 \pi-9 \sqrt{3})$. If hybrid use of x and θ in trig. Functions - contact your Team Leader. NMS is 0/6			
	Total		10	

Q6	Solution	Mark	otal	Comment
	NO MISREADS ARE ALLOWED IN THIS QUESTION			
(a)	$\begin{aligned} & {\left[\begin{array}{r} 3 \\ 1 \\ -1 \end{array}\right]=\left[\begin{array}{r} 2 \\ -1 \\ 3 \end{array}\right]+\lambda\left[\begin{array}{r} -1 \\ -2 \\ p \end{array}\right]} \\ & \text { (From } x \text { or } y \text {) } \lambda=-1 \\ & \text { (Using } z \text {) }-1=3-p \quad \rightarrow \quad p=4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\lambda=-1$ seen or used AG; must see $p=4$ justfied
(b)	$(-1)(2)+(-2)(-3)+(4)(-1)=0$ perpendicular $/ 90^{\circ} \mathrm{OE}$	B1	1	Correct scalar product $=0$ and perpendicular or $90^{\circ} \mathrm{OE}$ seen.
	Accept $-2+6-4=0$ for sufficient evidence of correct scalar product. Accept inclusion of λ and μ in their scalar product.			
(c)	$\begin{aligned} 2-\lambda & =2+2 \mu \\ -1-2 \lambda & =1-3 \mu \\ 3+4 \lambda & =-3-\mu \end{aligned}$ Solving x and y gives $\quad \lambda=-\frac{4}{7} \quad \mu=\frac{2}{7}$ Checking in z gives $\frac{5}{7} \neq-\frac{23}{7}$ so l_{1} and l_{2} (or they) don't intersect / skew	M1 A1 E1	3	Setting up at least two of these equations and attempt to solve for λ or μ. Either correct. Correct use of correct λ and μ to show they don't satisfy the unused equation and a conclusion
	Solving x and z gives $\lambda=-\frac{12}{7} \quad \mu=\frac{6}{7}$ and checking in y gives $\frac{17}{7} \neq-\frac{11}{7}$. Solving y and z gives $\lambda=-\frac{10}{7} \quad \mu=-\frac{2}{7}$ and checking in x gives $\frac{24}{7} \neq \frac{10}{7}$. For $\mathbf{E} 1$ they could correctly use correct value of λ or μ in third equation and show inconsistent value for μ or λ (or that the point of intersection is not consistent) and state a conclusion.			
(d)	$\begin{gathered} A C^{2}=5 \text { or } A C=\sqrt{5} \\ (\overrightarrow{\boldsymbol{B C}}=) \quad\left[\begin{array}{c} \lambda \\ 2+2 \lambda \\ -6-4 \lambda \end{array}\right] \\ \lambda^{2}+(2+2 \lambda)^{2}+(-6-4 \lambda)^{2}=5 \end{gathered}$ $\begin{array}{cc} 21 \lambda^{2}+56 \lambda+35 & (=0) \\ (\lambda+1)(3 \lambda+5) & (=0) \end{array}$ $\left(\frac{11}{3}, \frac{7}{3},-\frac{11}{3}\right)$ uniquely identified as B	B1 B1 M1 A1 dM1 A1	6	Condone any wrong signs seen in $\overrightarrow{\boldsymbol{A C}}$ PI if seen correct on M1 line. Accept $+/-$ this vector PI if seen correct on M1 line. Forming a quadratic equation in λ from $B C^{2}=A C^{2} \quad(\mathrm{ft}$ on $B C$ and $A C$.) No square root signs. OE. Withhold if a component error in $\overrightarrow{\boldsymbol{B C}}$ OE. Attempt at factors for a three term quadratic PI by correct λ values Accept as a column vector Withhold if a component error in $\overrightarrow{\boldsymbol{B C}}$.

For dM1 the factors must give their $3 \lambda^{2}$ and +5 terms or the formula must be used correctly.

Use of scalar product

$$
\mathrm{M}(2-\lambda,-1-2 \lambda, 3+4 \lambda)(\mathbf{B} 1) \quad \overrightarrow{\boldsymbol{C M}}=\underline{\boldsymbol{m}}-\underline{\boldsymbol{c}}=\left[\begin{array}{c}
-\lambda \tag{B1}\\
-2-2 \lambda \\
6+4 \lambda
\end{array}\right]
$$

$\overrightarrow{\boldsymbol{C M}} \cdot\left[\begin{array}{c}-1 \\ -2 \\ 4\end{array}\right]=0 \quad(-\lambda)(-1)+(-2-2 \lambda)(-2)+(6+4 \lambda)(4)=0($ M1 $)$

$$
\lambda+4+4 \lambda+24+16 \lambda=0 \quad(\mathbf{A 1}) \quad \text { a correct linear equation in } \lambda \quad 21 \lambda+28=0
$$

$\rightarrow \lambda=-\frac{4}{3}$ (dM1) solving for $\lambda \rightarrow M\left(\frac{10}{3}, \frac{5}{3},-\frac{7}{3}\right)$ so B is $\left(\frac{11}{3}, \frac{7}{3},-\frac{11}{3}\right)$ (A1) accept as column vector

Use of Pythagoras

$A C^{2}=5($ or $A C=\sqrt{5})(\mathbf{B 1}) \mathrm{M}$ is $(2-\lambda,-1-2 \lambda, 3+4 \lambda) \overrightarrow{\boldsymbol{A M}}=\left[\begin{array}{c}-1-\lambda \\ -2-2 \lambda \\ 4+4 \lambda\end{array}\right]$ or $\overrightarrow{\boldsymbol{C M}}=\left[\begin{array}{c}-\lambda \\ -2-2 \lambda \\ 6+4 \lambda\end{array}\right]$ (B1)

$$
\begin{equation*}
A M^{2}+\quad C M^{2} \quad=\quad A C^{2} \tag{M1}
\end{equation*}
$$

$(-1-\lambda)^{2}+(-2-2 \lambda)^{2}+(4+4 \lambda)^{2}+(-\lambda)^{2}+(-2-2 \lambda)^{2}+(6+4 \lambda)^{2}=(-1)^{2}+0^{2}+(-2)^{2}$
$k\left(3 \lambda^{2}+7 \lambda+4\right)=0$ (A1) ($\lambda=-1$) or $\lambda=-\frac{4}{3} \quad$ (dM1) $B\left(\frac{11}{3}, \frac{7}{3},-\frac{11}{3}\right)$ (A1) Accept as column vector

$$
\text { Withhold the A marks if there are any earlier error(s) e.g. } \overrightarrow{\boldsymbol{C M}}=\left[\begin{array}{c}
\lambda \\
-2-2 \lambda \\
6+4 \lambda
\end{array}\right] \text { etc. }
$$

Could use the fact that M is the mid-point of $A B$ in either of the above and express it as $M\left(\frac{5-\lambda}{2},-\lambda, 1+2 \lambda\right)$.

Use of equal angles at A and B

$\overrightarrow{\boldsymbol{A B}}=\left[\begin{array}{c}-1 \\ -2 \\ 4\end{array}\right] \quad$ (direction of l_{1}) and $\overrightarrow{\boldsymbol{A C}}=\left[\begin{array}{c}-1 \\ 0 \\ -2\end{array}\right] \quad$ (B1) $\quad \overrightarrow{\boldsymbol{B C}}=\left[\begin{array}{c}\lambda \\ 2+2 \lambda \\ -6-4 \lambda\end{array}\right]$
$\overrightarrow{\boldsymbol{A B}} \cdot \overrightarrow{\boldsymbol{A C}}=\overrightarrow{\boldsymbol{B A}} \cdot \overrightarrow{\boldsymbol{B C}} \rightarrow(-1)(-1)+(-2)(0)+(4)(-2)=(1)(\lambda)+(2)(2+2 \lambda)+(-4)(-6-4 \lambda)$
$\rightarrow 1+0-8=\lambda+4+4 \lambda+24+16 \lambda \quad$ (A1) any correct equation $\quad(-7=21 \lambda+28)$
$\rightarrow \lambda=-\frac{5}{3}$ (dM1) solving for $\lambda \quad B\left(\frac{11}{3}, \frac{7}{3},-\frac{11}{3}\right)$
Correct $\overrightarrow{\boldsymbol{B A}}, \overrightarrow{\boldsymbol{C A}}$ and/or $\overrightarrow{\boldsymbol{C B}}$ could score the $\mathbf{B} 1$ marks.
Allow $\pm \overrightarrow{\boldsymbol{A B}} \cdot \overrightarrow{\boldsymbol{A C}}= \pm \overrightarrow{\boldsymbol{B A}} \cdot \overrightarrow{\boldsymbol{B C}}$ for the M1 mark but must be 4 vectors containing angles at A and B ..
Use of equivalent direction vectors always possible. If you come across a solution that you think falls into one of these methods and you're not sure how to mark it, please contact your Team Leader.

Q7	Solution	Mark	Total	Comment
(a)	$\begin{gathered} \sin 3 y+3 \mathrm{e}^{-2 x} y+2 x^{2}=5 \\ \frac{\mathrm{~d}}{\mathrm{~d} x}(\sin 3 y)=3 \cos 3 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ \frac{\mathrm{~d}}{\mathrm{~d} x}\left(3 \mathrm{e}^{-2 x} y\right)=p \mathrm{e}^{-2 x} y+q \mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ =-6 \mathrm{e}^{-2 x} y+3 \mathrm{e}^{-2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ \frac{\mathrm{~d}}{\mathrm{dx}}\left(2 x^{2}=5\right) \quad \text { gives }+4 x=0 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}\left(3 \cos 3 y+3 \mathrm{e}^{-2 x}\right)-6 \mathrm{e}^{-2 x} y+4 x=0 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6 \mathrm{e}^{-2 x} y-4 \mathrm{x}}{3 \cos 3 y+3 \mathrm{e}^{-2 x}} \end{gathered}$	B1 M1 A1 B1 M1 A1	6	Both correct, looking for $+4 x=0$. Attempt to factor out $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from an expression involving exactly two $\frac{\mathrm{d} y}{\mathrm{~d} x}$ terms. PI by next line. Can be earned without scoring second B1.
	Diff. w.r.to y marks as $3 \cos 3 y(\mathbf{B 1})+\left(3 e^{-2 x}-6 y e^{-2 x} \frac{d x}{d y}\right)(\mathbf{M 1 ~ A 1})+4 x \frac{d x}{d y}=0(\mathbf{B 1})$ then (M1 A1) Ignore spurious $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cdots$ for first four marks. Penalise with M0 A0 unless recovered. Candidates who miss out $=0$ will lose the second \mathbf{B} mark but can still earn the final \mathbf{A} mark if recovered.			
(b)(i)	$\begin{array}{cc} \text { At } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 & 6 \mathrm{e}^{-2 x} y-4 x=0 \\ & y=\frac{2}{3} x \mathrm{e}^{2 x} \end{array}$	M1 A1	2	Putting the numerator of their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempting to solve for y. OE any exact value for $\frac{2}{3}$ including $0 . \dot{6}$
	To score the A1 mark in (b)(i) their $\frac{\mathrm{dy}}{\mathrm{dx}}$ in part (a) must be correct but allow the marks in (b)(ii).			
(b)(ii)	Using $y=\frac{2}{3} x \mathrm{e}^{2 x}$ in original equation gives $\sin \left(3 \times \frac{2}{3} x \mathrm{e}^{2 x}\right)+3 \mathrm{e}^{-2 x} \times \frac{2}{3} x \mathrm{e}^{2 x}+2 x^{2}=5$ $\left.\begin{array}{c} \sin \left(2 x \mathrm{e}^{2 x}\right)+2 x+2 x^{2}=5 \\ \mathrm{f}(x)=\sin \left(2 x \mathrm{e}^{2 x}\right)+2 x+2 x^{2}-5=0 \\ (\mathrm{f}(1)=0.80 \ldots+2+2-5=) \quad-0.198 \ldots \\ (\mathrm{f}(1.2)=0.96 \ldots+2.4+2.88-5=) \\ 1.249 \ldots \end{array}\right\}$ Sign change so $1<x<1.2$	M1 A1 dM1 A1	4	Attempt to substitute their expression of the form $y=r x \mathrm{e}^{2 x}$ into original equation. Correct but need not be simplified Rearrange into the form $\mathrm{f}(x)=0$. $\mathrm{f}(1)$ and $\mathrm{f}(1.2)$ correct to at least 1 SF . $f(1)$ and $f(1.2)$ correct and sign change implies conclusion.

Leaving as $\sin \left(2 x \mathrm{e}^{2 x}\right)+2 x+2 x^{2}=5$ and using $x=1$ and $x=1.2$ to get $4.8 \ldots$ and $6.2 \ldots$ for LHS (dM1) and $4.8<5$ and $6.2>5$ OE with conclusion scores (A1).
Total $\quad 12$

Q8	Solution	Mark	Total	Comment
(a)	$A\left(\frac{1}{x}+\frac{1}{k-x}\right)=A\left(\frac{k-x+x}{x(k-x)}\right)\left(=A\left(\frac{k}{x(k-x)}\right)\right)$ Comparing gives $A k=1$ so $\quad A=\frac{1}{k}$	M1 A1	2	To compare with $\frac{1}{x(k-x)}$ $\text { NMS } A=\frac{1}{k} \operatorname{scores} 2 / 2$
	Alternative: $\frac{1}{x(k-x)}=\frac{A}{x}+\frac{A}{k-x} \rightarrow 1=A(k-x)+A x(\mathbf{M 1}) \rightarrow 1=A k \rightarrow A=\frac{1}{k} \quad(\mathbf{A 1})$			
(b)	$\begin{gathered} \frac{1}{x(1200-x)}=\lambda\left(\frac{1}{x}+\frac{1}{1200-x}\right) \\ \lambda \int \frac{1}{x}+\frac{1}{1200-x} \mathrm{~d} x \quad\left(=\frac{1}{3600} \int \mathrm{~d} t\right) \\ \lambda(\ln x-\ln (1200-x)) \\ =\frac{t}{3600} \quad(+C) \\ \frac{1}{1200}(\ln 300-\ln 900)=C \rightarrow C=\frac{1}{1200} \ln \left(\frac{1}{3}\right) \\ t=3 \ln \left(\frac{3 x}{1200-x}\right) \end{gathered}$	A1 A dM1 A1	5	Separation of x terms into two fractions. Common multiple needn't be correct. Correct log integrations (LHS) Using $x=300$ and $t=0$ to find a value for C AG be convinced
	AG!!! - must see some evidence of correct log manipulation before awarding the final A1 e.g. $\ln x-\ln (1200-x)=\frac{t}{3}+\ln \left(\frac{1}{3}\right) \rightarrow \ln x-\ln (1200-x)=\frac{t}{3}+\ln \left(\frac{1}{3}\right) \rightarrow \ln \left(\frac{3 x}{1200-x}\right)=\frac{t}{3}$ to answer Alternative Method$\begin{aligned} \frac{d x}{d t}=\frac{x(1200-x)}{3600} \rightarrow & \frac{d t}{d x}=\frac{3600}{x(1200-x)} \rightarrow \quad \frac{d t}{d x}=3\left(\frac{1}{x}+\frac{1}{1200-x}\right) \quad \text { M1 }(\text { using (a)) } \\ & \rightarrow t=3 \ln x \text { A1 }-3 \ln (1200-x) \mathbf{A 1} \quad(+\mathrm{C}) \text { then as above for dM1 A1 } \end{aligned}$			
(c)(i)	Using $x=600 \quad t=3 \ln \left(\frac{1800}{1200-600}\right) \quad$ OE 14.20 or 2.20 (p.m.)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	e.g. $t=3 \ln 3$ or 3.29... NMS: correct time scores $\mathbf{2 / 2}$
(c)(ii)	$\begin{aligned} t=3 \ln \left(\frac{3 x}{1200-x}\right) & \rightarrow \frac{3 x}{1200-x}=\mathrm{e}^{\frac{t}{3}} \\ x & =\frac{1200 \mathrm{e}^{\frac{t}{3}}}{3+\mathrm{e}^{\frac{t}{3}}} \\ \text { (when } t=4 \text {) } \quad x & =670 \end{aligned}$	M1 A1 B1	3	OE for RHS - e.g. $\sqrt[3]{e^{t}}$ CAO ; not 670.094...
	OE could also include $\mathrm{e}^{\mathrm{t}}=\left(\frac{3 x}{1200-x}\right)^{3}$ etc. It is possible to score M1 A0 B1.			
	Total	12		

[^0]: Version: 1.0 Final

